ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕХНОЛОГИИ ВЫСОКОМОЛЕКУЛЯРНЫХ И ВОЛОКНИСТЫХ МАТЕРИАЛОВ

«УТВЕРЖДАЮ» Первый проректор Попов Ю.В. "" 2007 г.

ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ

магистерской программы 550810 «Химическая технология высокомолекулярных соединений» (код ОКСО 240500)

РАБОЧАЯ ПРОГРАММА

по дисциплине "Основы проектирования и оборудование производства полимеров"

Курс	5
Семестр	9
Всего часов аудиторных занятий	68
Лекции, час	34
Практические занятия, час	34
СРС, всего часов по учебному плану	68
ОргСРС, час	17
Зачет (семестр)	9

Рабочая программа составлена на основании ГОС ВПО, учебного плана по специальности 250500 «Химическая технология ВМС» и методических указаний «Рекомендации по разработке рабочих программ учебных дисциплин и методик рейтингового контроля знаний студентов», РПК «Политехник», Волгоград, 2005 г.

Составитель рабочей программы Проф. каф. ТВВМ, д.х.н.

Навроцкий В.А.

Рабочая программа утверждена на заседании кафедры «Технология высокомолекулярных и волокнистых материалов»,

«<u>28</u>» <u>марта</u> 2007 г., протокол № 6

Заведующий кафедрой доктор хим. наук, профессор

А.В. Навроцкий

Одобрено научно-методическим советом химико-технологического факультета «___»_____2007 г., протокол №

Зам. председателя научно-методического совета, зам. декана XTФ Доцент, к.т.н. Кетат Л.В.

1. Цели и задачи дисциплины

"Основы проектирования и оборудование производства полимеров" является одной из специальных дисциплин при подготовке инженеров технологов по специальности 250500 «Химическая технология высокомолекулярных соединений».

1.1 Цель преподавания дисциплины

Целью дисциплины является подготовка специалистов к эксплуатации, анализу и проектированию химической аппаратуры составляющей химикотехнологическую систему, использующуюся в производстве полимеров.

1.2 Задачи изучения дисциплины

Основная задача заключается в приобретении комплекса знаний об устройстве и принципе действия технологического оборудования для производства мономеров и полимеров, правилах его эксплуатации, а также в приобретении навыков расчета и проектирования технологического оборудования с использованием кинетических моделей.

Изучение указанной дисциплины предполагает, что студент должен:

- <u>знать</u> закономерности формирования химико-технологических систем на основе химической концепции метода производства, основные виды оборудования и его технологический расчет;
- <u>уметь</u> построить кинетическую модель процесса и технологическую схему производства мономера и полимера на основании полученных знаний и информации из технической литературы, включая оригинальные источники.

1.3 Взаимосвязь учебных дисциплин

Предлагаемая дисциплина опирается, в основном, на знания, полученные студентами при изучении инженерной химии и процессов и аппаратов химических производств. При формировании химической концепции метода получения полимера студенту необходимы знания по общей, органической и физической химии (выявление механизма химических превращений), физике, математике, и основам химии полимеров (закономерности синтеза и физико-химические свойства конкретного полимера).

1. Цели и задачи дисциплины

"Основы проектирования и оборудование производства полимеров" является одной из специальных дисциплин при подготовке магистров по программе 550810 «Химическая технология высокомолекулярных соединений».

1.1 Цель преподавания дисциплины

Целью дисциплины является подготовка специалистов к эксплуатации, анализу и проектированию химической аппаратуры составляющей химикотехнологическую систему, использующуюся в производстве полимеров.

1.2 Задачи изучения дисциплины

Основная задача заключается в приобретении комплекса знаний об устройстве и принципе действия технологического оборудования для производства мономеров и полимеров, правилах его эксплуатации, а также в приобретении навыков расчета и проектирования технологического оборудования с использованием кинетических моделей.

Изучение указанной дисциплины предполагает, что студент должен:

- <u>знать</u> закономерности формирования химико-технологических систем на основе химической концепции метода производства, основные виды оборудования и его технологический расчет;
- <u>уметь</u> построить кинетическую модель процесса и технологическую схему производства мономера и полимера на основании полученных знаний и информации из технической литературы, включая оригинальные источники.

1.3 Взаимосвязь учебных дисциплин

Предлагаемая дисциплина опирается, в основном, на знания, полученные студентами при изучении инженерной химии и процессов и аппаратов химических производств. При формировании химической концепции метода получения полимера студенту необходимы знания по общей, органической и физической химии (выявление механизма химических превращений), физике, математике, и основам химии полимеров (закономерности синтеза и физико-химические свойства конкретного полимера).

Изучаемая дисциплина непосредственно взаимодействует с параллельно изучаемыми: "Анализ и проектирование ХТС", "Химическая технология производства мономеров и полимеров" и является базовой для выполнения студентами междисциплинарного курсового проекта в девятом и десятом семестрах. Эта дисциплина помогает студентам в приобретении навыков самостоятельной работы.

2 Содержание учебной дисциплины "Основы проектирования и оборудование производства полимеров"

Таблица 2

No	Название темы, наименование вопросов,	Кол-во	Практич.	Метод.	Форма
	изучаемых на лекциях или практических занятиях	час. на	занятия	указания	контроля
		лекции			
1	2	3	4	5	6
1	Введение. Предмет и содержание	4	1		C,3
	дисциплины. Роль инженера химика-				
	технолога на производстве, в проектном				
	или исследовательском институте. Общая				
	характеристика и особенности				
	аппаратурного оформления и производства				
	мономеров и полимеров, требования»				
	предъявляемые к технологическому				
	оборудованию				
2.	Организация проектного дела. Общая	6	16,17		Ко,3
	характеристика проекта химического				
	производства. Цель проекта. Организации,				
	участвующие в создании проекта,				
	распределение обязанностей и				
	ответственности между ними. Этапы				
	проектирования. Проектная докумен-				
	тация. Взаимосвязь проекта с бизнес-				
	планом. Цель и основное назначение				
	бизнес-плана, необходимость и последова-				
	тельность его разработки.				
3.	Проектирование и анализ	4	4,7,1		C,3
	технологической схемы. Разработка		1,13		
	технологической концепции. Типовые				
	(физические процессы химической				
	технологии. Химические процессы.				
	Признаки, характеризующие процесс и спо-				
	соб его проведения. Технологические				
	принципы. Организация работы				
	технологической схемы.				

4.	Создание кинетических моделей и	8	3,6,	К,3
٦.	химической концепции метода производства	_	10,14,	11,5
	полимера как основной этап		15	
	проектирования. Способы выражения			
	скоростей реакций. Характеристика			
	кинетических моделей. Кинетические			
	модели сложных реакций. Проверка			
	кинетических моделей. Анализ химической			
	последовательности превращения исход-			
	ных веществ в целевые с выявлением			
	лимитирующей стадии и последующем по-			
	строении кинетической модели на			
	конкретном примере			
5.	Реактор - основной элемент химико-	2	1,5,12	Ко,3
	технологической системы. Конструктивные		13	
	особенности и функциональные характери-			
	стики реактора. Реактор как система вза-			
	имосвязанных элементов.			
6.	Выбор технологического оборудования.	4	2,6,9	Ко,3
	Характеристика материалов для изготовле-			
	ния аппаратуры. Противокоррозионная			
	защита и тепловая изоляция оборудования.			
	Испытания химических аппаратов и машин.			
	Основные правила техники безопасности.			
	Стандартизация в химическом машино-			
	строении. Конструирование и механический			
	расчет основных узлов и деталей			
	химических машин и аппаратов.			
7.	Объемно-планировочное решение	3	5,8,13	Ко,3
	(компоновка) производства. Варианты объ-			
	емно-планировочного решения цеха. Ме-			
	тоды компоновки. Размещение технологиче-			
_	ского оборудования.			
8.	Особенности общезаводского	3	1,9,14	C,3
	хозяйства производства мономеров и			
	полимеров:			
	- хранение сырья;			
	- энергоснабжение;			
	- водоснабжение и канализация;			
	- очистка стоков и газовых выбросов.	2.1		
	Всего часов:	34		

3. Учебно-методические материалы дисциплины 3.1 Практические занятия

Таблица 3.1

Номер	Тема практического занятия	Объем в
занятия	Toma Ilpuntii toonoto suimiim	часах
1-4	Аппараты с мешалками. Назначение и способы	8
	перемешивания. Конструкция аппаратов с мешалками	
	как система взаимосвязанных элементов. Тепло-	
	передача в аппаратах с мешалками с учетом вязкости	
	перерабатываемых продуктов. Влияние перемешивания	
	на эффективность жидкофазных реакторов, тех-	
	нологический расчет жидкофазных реакторов. Перио-	
	дический реактор - расчет времени цикла. Аппараты	
	непрерывного действия для процессов полимеризации.	
	Батарея реакторов. Реакторы для процессов	
	растворной, эмульсионной и суспензионной полиме-	
	ризации.	
5-7	Трубчатые аппараты и реакторы колонного типа	6
	подчиняющиеся модели идеального вытеснения. Расчет	
	времени пребывания. Влияние режима движения смеси	
	в трубе на химическую реакцию и теплопередачу.	
	Барботажные аппараты. Реакторы типа эфлифта.	
	Газожидкостные реакторы. Аппараты для дегазации	
	полимеров. Технологический расчет реакторов ко-	
	лонного типа.	
8-11	Реакторы для контанктно-каталитических	8
	процессов. Факторы, влияющие на химическую	
	реакцию, проходящую на поверхности катализатора.	
	Конструкции аппаратов с неподвижным слоем	
	катализаторов. Гидродинамический режим движения	
	реагентов в слое катализатора. Технологический	
	расчет контактных реакторов:	
	-расчет контактных аппаратов на основе удельной	
	производительности катализатора;	
	- расчет адиабатических реакторов для реакций,	
	проходящих в кинетической области; - расчет адиабатических реакторов для реакций,	
	проходящих в диффузной области;	
	- расчет реакторов с теплообменной поверхностью,	
	имеющую постоянную температуру;	
	- расчет реакторов с теплообменной поверхностью,	
	имеющую переменную температуру;	
	- графический метод расчета контактных реакторов.	
12-13	Разработка химической концепции метода	4
	производства конкретного продукта. Анализ	

	химической схемы и построения кинетической модели		
	в качестве исходных данных для разработки проекта.		
14-15	Оборудование процессов выделения полимеров.	4	
	Схемы коагуляции латексов и концентрирования		
	водных дисперсий. Вибрационные и червячные ма-		
	шины. Сушилки. Закономерности сушки		
16-17	Обсуждение этапов выполнения и содержания	4	
	междисциплинарного курсового проекта.		
	Всего часов	34	

3.2 Организуемая самостоятельная работа студентов

Таблица 3.2

Форма ОргСРС	Номер семестра	Срок выполнения	Время, затрачи-
			ваемое на выпол-
			нение ОргСРС, час
Семестровая работа	9	декабрь	17

3.3 Основная и дополнительная литература

Основная литература

- 1. Л.З. Альперт. Основы проектирования химических установок. 4-ое изд.-М.: Высшая школа, 1989.- 304 с.
- 2. В.О. Рейхсфельд, В.С.Шеин, В.И.Ермаков. Реакционная аппаратура и машины заводов основного органического синтеза и синтетического каучука. 2-ое изд.- Л.: Химия, 1985.-264 с.
- 3. В.И.Ермаков, В.С.Шеин, В.О. Рейхсфельд. Инженерные методы расчета процессов получения и переработки эластомеров. Л.: Химия, 1982.- 334 с.
- 4. В.О. Рейхсфельд, Л.Н.Еркова. Оборудование заводов основного органического синтеза и синтетических каучуков.- Л.: Химия,1974. 438 с.
- 5. В.М. Сутягин, А.А. Ляпков. Основы проектирования и оборудование производства полимеров / учебное пособие. Томск: изд. ТПУ, 2005. 392 с.
- 6. Основы проектирования химических производств: Учебник для вузов / Под ред. А.И. Михайличенко. М.: ИКЦ «Академкнига», 2006. 332 с.

Дополнительная литература

- 7. О. Левеншпиль. Инженерное оформление химических реакций.-М.: Химия, 1969.- 624 с.
- 8. Э.Генкин. Оборудование химических заводов. М.: Высшая школа, 1978.- 272 с.
- 9. А. Вольфсон, Н.С. Ениколонян. Расчеты высокоэффективных полимеризационных процессов. М.: Химия, 1980. 312 с.
- 10. В.П. Будтов, В.В. Консетов. Тепломассоперенос в полимерных процессах .-Л.: Химия, 1983. 256 с.
- 11. М.Г.Рудин, Г.Ф.Смирнов. Проектирование нефтеперерабатывающих и нефтехимических заводов. Л.: Химия, 1984. 256 с.
- 12. Химия и технология мономеров для синтетических каучуков. Учебное пособие для вузов. /Кирпичников П.А., Победимский Д.Г., Лиакумович А.Г., Попова Л.М.-Л.: Химия, 1981. 264 с.
- 13. А.П. Дарманян, ОА. Тишин. Технологический расчет химических реакторов. Учебное пособие.- Волгоград: изд. ВолгПИ, 1989. 111 с.
- 14. В.Н.Соколов, И.В. Даманский. Газожидкостные реакторы. М.: Химия, 1976.
- 15. И.Л.Иоффе. Проектирование процессов и аппаратов химической технологии. Л.: Химия, 1991. 326 с.
- 16. В.А.Навроцкий. Методические указания. Междисциплинарный курсовой проект. ВолгГТУ, Волгоград, 2002 г.

4. Рейтинговый контроль изучения дисциплины.

Таблица 4.1

	Распределение баллов
	по семестрам
	9 семестр
1. Теоретические занятия	15
2. Практические занятия	25
3. ОргСРС	20
4. Зачет	40
	Всего баллов 100

5. Протокол согласования рабочей программы

Таблица 5.1

	Наименование	Предложения об	Принятое
Наименование	кафедры, с	изменениях в рабочей	решение
дисциплин, изучение	которой	программе; подпись зав.	(протокол, дата)
которых опирается на	проводится	кафедрой с которой	кафедры
данную дисциплину	согласование	проводится согласование	разработчика
	рабочей		
	программы		
1. Процессы и	ПАХП		
аппараты химических			
производств			
2. Основы инженерной	TOHC		
химии			
3. Анализ и	САПР		
проектирование XTC			

6. Лист изменений и дополнений, внесенных в рабочую программу

Дополнения и	Номер протокола,	Дата
изменения	дата пересмотра,	утверждения и
	подпись зав. кафедрой	подпись декана