МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕХНОЛОГИИ ВЫСОКОМОЛЕКУЛЯРНЫХ И ВОЛОКНИСТЫХ МАТЕРИАЛОВ

«УТ	ВЕРЖДАЮ»
Перв	ый проректор
	Попов Ю.В.
 "	2004Γ.

РАБОЧАЯ ПРОГРАММА

По дисциплине «Технология мономеров для ВМС» для образовательной программы по специальности 250500

«Химическая технология ВМС»

Факультет химико-технологический

Курс	5
Семестр	9
Всего часов по учебному плану	136
Всего часов аудиторных занятий	68
Лекции, час.	34
Лабораторные занятия	34
Практические (семинарские занятия)	-
Срс, всего по учебному плану	68
Орг. Срс, час.	10
Экзамены (семестр)	9

Рабочая программа составлена на основании учебного плана по специальности				
250500 «Технология мономеров для ВМС», утвержден	а приказом ректора			
ВолгГТУ № от 200 _ г.				
Составитель рабочей программы				
Доцент, к.х.н.	Т.П. Алейникова			
Рабочая программа утверждена на заседании кафедры	ы «Технология высокомоле-			
кулярных и волокнистых материалов»				
«22» июня 2004 г., протокол № 7				
Заведующий кафедрой				
доктор хим. наук, профессор	О.И. Тужиков			
Одобрено научно-методическим советом по направле	нию 5508 «Химическая тех-			
нология и биотехнология»				
« 24 » июня 2004 г., протокол № 9				
Председатель научно-методического совета				
доцент, канд.хим.наук	С.Н.Елфимова			
Декан химико-технологического факультета,				
доктор хим.наук, профессор	В.А.Навроцкий			

Раздел 1. Цель и задачи дисциплины

1.1 Цель преподавания дисциплины

Основной целью преподавания дисциплины является обучение студентов теоретическим основам химии и технологии производства мономеров для каучуков, пластмасс и волокон.

1.2 Задачи изучения дисциплины

Привитие студентам знаний по техническим процессам получения мономеров, применяемых для синтеза ВМС полимеризационным, поликонденсационным, циклополимеризационным и другими методами. Привитие студентам знаний о сырьевой базе мономеров для ВМС, диалектике ее развития, каталитических процессах и катализаторах, применяемых для производства мономеров.

Студент должен знать: сырьевую базу для производства мономеров, основные процессы переработки нефти с целью получения мономеров, катализаторы, применяемые в промышленности мономеров, технологии основных мономеров.

Студент должен уметь: собрать установку для получения мономеров, провести балансовый опыт синтеза мономера, оценить эффективность процесса (активность, селективность, выход и т.д.)

1.3 Взаимосвязь учебных дисциплин

Теоретической базой для изучения дисциплины являются: инженерная термодинамика, основы инженерной химии, процессы и аппараты химических производств, система управления химико-технологическими процессами, основы математического моделирования, а также общая и неорганическая химия, эколо-

гия, органическая химия и биохимия, аналитическая химия и и физико-химические методы анализа.

Знания данной дисциплины используются при освоении дисциплины «Общая химическая технология ВМС», «Моделирование технологических процессов синтеза ВМС», «Химия и технология ВМС со специальными свойствами», при выполнении УИРС, курсовой, выпускной работы и магистерской диссертации.

Раздел 2. Содержание учебной дисциплины «Технология мономеров для ВМС»

№	Название темы, наименова- ние вопросов, изучаемых на лекциях	оте лекции	чество ча веденное лабо- ратор- ные	-	Мето- диче- ские указа- ния	Форма кон- троля
1	Введение. История развития химии мономеров. Исходное сырье для производства мономеров: нефть, природный газ, попутные газы, каменный уголь, растительные продукты как сырьевая база для производства мономеров.	2				Эк
2	Каталитические процессы в технологии производства мономеров для ВМС. Основные типы катализаторов гидрования - дегидрования. Способы получения катализаторов. Характеристики активности катализаторов.	2				Эк
3	Технология производства олефинов. Основные процессы переработки нефти, закономерности процессов крекинга нефти и процессов	2	4		1	Эк

	T		· · · · · · · · · · · · · · · · · · ·		,
	разделения продуктов крекинга. Выделение этилена, пропилена, изобутилена. Специальные методы получения олефинов.				
4	Технология производства диенов. Физико-химические свойства и применение. Общая характеристика методов получения. Промышленная технология изопрена из изобутилена и формальдегида (через ДМД и МБД), дегидрированием изопентан. Про-	4	2	1	К. Эк
	цессы выделения изопрена. Бутадиен. Физико-химические свойства и применение. Общая характеристика методов получения. Промышленная технология бутадиена из этилового спирта, одно — и двухстадийным дегидрованием бутана. Выделение бутадиена из контактных газов.	4	1	1	К. эк
5	Хлоропрен. Физико- химические свойства и при- менение. Методы получения хлоропрена. Технология син- теза хлоропрена из ацетилена и бутадиена.	2			К. эк
6	Акрилонитрилы. Физико- химические свойства и при- менение, способы получения акрилонитрилов. Технология синтеза акрилонитрила окис- лительным аммонолизом пропилена.	1			Эк.
	Стирол, α-метилстирол. Физико-химические свойства и применение. Способы получения. Технология синтеза	2	3	1	

				I	I	
	Стирола дегидрованием этил-					
	бензола.					
	Хлористый винил. Физико-	1				
	химические свойства и при-					
	менение. Способы получения.					
	Технология синтеза хлори-					
	стого винила из ацетилена					
	Винилиденхлорид. Физико-	1				
	химические свойства и при-					
	менение. Способы получения.					
	Технология производства					
	щелочным дегидрохлориро-					
	ванием трихлорэтана.					
	Фторсодержащие олефины:					
	тетрафторэтилен, трифтор-	2				
	хлорэтилен, винилиденфто-					
	рид, фтористый винил. Физи-					
	ко-химические свойства и					
	применение. Способы полу-					
	чения.					
7	Альдегиды и α-окиси олефи-					Эк
	нов. Формальдегид. Физико-	2	5	1		
	химические свойства и при-					
	менение. Технология синтеза					
	из метанола.					
	Ацетальдегид. Физико-	1				
	химические свойства и при-					
	менение. Способы получения.					
	Окиси олефинов. Физико-					
	химические свойства и при-	1				
	менение. Способы получения.					
8	Фенол. Физико-химические	1				Эк.
	свойства и применение. Спо-					
_	собы получения.					
9	Капролактам. Физико-	_				Эк.
	химические свойства и при-	2				
	менение. Технология синтеза					
	капролактама их фенола.	_				
10	Диизоцианаты. Физико-	1				Эк.
	химические свойства и при-					
	менение. Способы получения.	٠				
11	Акриловая и метакриловая	1				Эк.
	кислоты. Физико-химические					
	свойства и применение.					

	Способы получения.				
12	Винилацетат. Физико-	1			Эк
	химические свойства и при-				
	менение. Технология синтеза				
	винилацетата из ацетилена и				
	уксусной кислоты.				
13	Кремнийорганические моно-	2	6	1	ЭК
	меры: биметилдихлорсилан,				
	метилвинилдихлорсилан, ме-				
	тилфенилдихлорсилан. Об-				
	щая технология получения,				
	применение, физико-				
	химические свойства.				

Раздел 3. Учебно-методические материалы дисциплины

Таблица 3.1 - Лабораторные работы

№	Наименование лабораторной работы	Объем, час
1	Получение дивинил из этилового спирта на катализаторе	6
	С.В. Лебедева	
2	Получение изопрена	6
3	Получение стирола	6
4	Получение этилена, пропилена, изобутилена или их смесей	
	из спиртов	6
5	Получение ацетальдегида из этанола на катализаторе «Се-	
	ребро на пемзе»	6
6	Получение октаметилциклосилоксана	6
7	Синтез дикетена	6

Выполняется 3 работы, 2 часа зачетное занятие, 2 часа коллоквиум.

Таблица 3.2 – Организуемая самостоятельная работа студентов

Форма ОргСРС	Номер семестра	Срок выполнения	Время, затрачен-
			ное на выполнение ОргСРС
Carragenana			пие оргеге
Семестровая ра-			
бота по синтезу и	9	Конец семестра	10
свойствам и при-			
менению заданно-			
го мономера			

3.3 Основная литература

- 1. Кирпичников П.А., Берсенев В.В., Попова Л.М. Альбом технологических схем основных производств промышленности синтетических каучуков. / П.А Кирпичников, В.В. Берсенев, Л.М. Попова. Л.: Химия, 1986.
- 2. Огородников С.К., Идлис Г.С. Производство изопрена. / С.К. Огородников, Г.С. Идлис. Л.: Химия, 1973.
- 3. Тюряев И.Я. Физико-химические основы получения дивинила из бутана и бутилена. / И.Я. Тюряев. Л.: Химия, 1966.
- 4. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. / Н.Н. Лебедев. М.: Химия, 1975.
- 5. Юкельсон И.И. Технология основного органического синтеза. / И.И. Юкельсон. М.: Химия, 1968.
- 6. Тюряев И.Я. Теоретические основы получения бутадиена и изопрена методами дегидрирования. / И.Я. Тюряев. Киев: Наукова Думка, 1973.
- 7. Алхозов Т.Г., Лисовский А.Е.,. Окислительное дегидрирование углеводородов. / Т.Г. Алхозов, А.Е. Лисовский. – М.: Химия, 1980.
- 8. Андрианов К.А., Хонаношвили Л.М. Технология элементорганических мономеров и полимеров. / К.А. Андрианов, Л.М. Хонаношвили. М.: Химия, 1977.
- 9. Черный И.Р. Производство мономеров и сырья для нефтехимического синтеза. / И.Р. Черный. М.: Химия, 1977.
- 10. Кирпичников П.А. Химия и технология мономеров для синтетических каучуков. / П.А. Кирпичников. Л.: Химия, 1981.
- 11. Платэ А.А., Сливянский И.А. Основы химии и технологии мономеров. / А.А. Платэ, И.А. Сливянский. М.: Наука, 2002.

3.4 Дополнительная литература

1. Андреас Ф., Гребе К. Химия и технология пропилена. / Ф. Андреас, К. Гребе. – Л.: Химия, 1973.

- 2. Павлов С.Ю. Процессы выделения и очистки бутадиена. / С.Ю. Павлов. М.: ЦНИИТЭнефтехим, 1971.
- 3. Павлов С.Ю. Процессы выделения и очистки изопрена. / С.Ю. Павлов. М.: ЦНИИТЭнефтехим, 1972.
- 4. Серебряков В.П. Современное состояние производства и потреблениятокиси пропилена. / В.П. Серебряков. М.: ЦНИИТЭнефтехим, 1971.

3.5 Методические указания

- 1. Лабораторные работы по технологии мономеров для производства синтетического каучука и по технологии химических производств. Волгоград, 1995.
 - 2. Синтез дикетена. Волгоград, 1999.

Раздел 4. Рейтинговый контроль изучения дисциплины

Таблица 4.1 – Рейтинговый контроль изучения дисциплины

	Распределение баллов (по семестрам)		
Виды занятий	Семестр 9		
Коллоквиум	15		
Лабораторные работы	25		
ОргСРС	20		
Экзамен	40		
Итого	100		

Протокол согласования рабочей программы

Наименование	Наименование ка-	Предложение об	Принятое решение
дисциплин, изуче-	федры, с которой	изменении в рабо-	(протокол, дата)
ние которых опи-	проводится согла-	чей программе,	Кафедра разработ-
рается на данную	сование рабочей	подпись зав. ка-	чика
дисциплину	программы	федрой, с которой	
		проводится согла-	
		сование	
Общая химическая	TBBM	Согласование не	
технология ВМС		требуется	
Химия и техноло-			
гия ВМС со специ-	TBBM	Согласование не	

альными свойст-		требуется	
вами			
Моделирование	TBBM	Согласование не	
технологических		требуется	
процессов синтеза			
BMC			
	TBBM	Согласование не	
Основы проекти-		требуется	
рования и обору-			
дование произ-			
водств			

Лист изменений и дополнений, внесенных в рабочую программу

Дополнения или измене-	Номер протокола, дата	Дата утверждения, под-
ния	пересмотра, подпись зав.	пись декана
	кафедрой	